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OverviewOverview

• This presentation focuses on transfer of 
contaminants from prey to wildlife predators

• Two major issues:
– Do the contaminant levels in the dataset 

represent the levels to which predators are 
exposed?

– Is the dataset adequate to confidently estimate 
exposure?

• Briefly describe available techniques and 
present a case study
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General ApproachGeneral Approach
• Identify and characterize wildlife at risk

– diet, foraging range, preferred habitats
– life history, migration patterns, etc

• Select exposure model, identify critical input 
variables

• Review available data, where possible, 
collect data to fill critical gaps

• Parameterize exposure model, run 
analyses
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Parameterizing Exposure 
Models
Parameterizing Exposure 
Models

• Representativeness of data
– many data sets biased to more contaminated areas
– may provide uneven coverage of wildlife foraging area
– data need to be manipulated to account for spatial and 

temporal foraging patterns of wildlife focal species
• Adequacy of data

– costly to obtain large data sets
– need to account for variability in contaminant levels and 

uncertainty introduced by small data sets
– probabilistic techniques account for variability and 

uncertainty
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Representativeness of DataRepresentativeness of Data
• Various spatial weighting techniques 

available
– inverse distance weighting
– Thiessen polygons
– kriging

• Habitat weighting techniques can be used 
to account for wildlife foraging patterns

• Random walk and other models can be 
used to account for wildlife foraging 
patterns over time and space
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Types of Uncertainty in an 
Exposure Analysis
Types of Uncertainty in an 
Exposure Analysis

• Variability

• Incertitude

• Model uncertainty

• Variability

• Incertitude

• Model uncertainty
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Probabilistic Methods For Propagating 
Variability and Uncertainty
Probabilistic Methods For Propagating Probabilistic Methods For Propagating 
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Probability BoundsProbability Bounds
How?

– specify what you are sure about
– establish bounds on probability distributions
– select dependencies (no assumption, independence, perfect, etc.)

Why?
– accounts for uncertainty and variability
– puts bounds on Monte Carlo results
– bounds get narrower with better empirical information

Why not?
– cannot handle second-order probabilities
– may not be able to use subtle information to tighten bounds
– optimum bounds expensive to compute when variables repeated
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Probability BoundsProbability Bounds
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A = {lognormal, mean=[.5,.6], variance=[.001,.01]}
B = {min=0, max=.5, mode=.3}
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D = {shape = uniform, min=0, max=1}
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Second-order Monte CarloSecond-order Monte Carlo
How?

– let parameters of input distributions be distributions too
– nest Monte Carlo analyses
– either summarize with distribution of distributions, 
– or condense output into a single distribution

Why?
– acknowledges and accounts for the full extent of uncertainty

Why not?
– squared computational expense
– parameterizations can be difficult
– either results are cumbersome to interpret and explain
– or results confound ignorance with variability
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Second-order Monte CarloSecond-order Monte Carlo
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Case StudyCase Study

• Hypothetical case study
• Scenario

– birds exposed to persistent chemical
– goal: estimate distribution for chronic exposure
– local spatial scale
– some input variables well known, others not
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Exposure ModelExposure Model

TDI
F IR x C IR C x BSAF C x

BW
c w w f sed soil

=
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where
TDI = Total daily intake (µg/kg bw/day)
Fc = Fraction of diet and drinking water that is contaminated (unitless)
IRw = Intake rate for water (L/day)
IRf = Intake rate for food (g/day)
Cw = Concentration in water (µg/L)
Csed = Concentration in sediment (µg/g)
Csoil = Concentration in soil (µg/g)
BSAF = Biota-sediment accumulation factor (unitless)
BW = Body weight (kg)
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Probability Bounds Probability Bounds 

• Several inputs have much incertitude
– biota-sediment accumulation factor
– food intake rate

• Several inputs have mostly variability
– body weight
– concentrations in soil, sediment and water
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Inputs for AnalysisInputs for Analysis

distributions used
in Monte Carlo 
simulation shown 
in red

probability bounds
shown in blue
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Estimated ExposureEstimated Exposure

µg/kg/day

Estimated median 30 [27, 530]
90th percentile 450 [90, 3100]
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Then What?Then What?

• Estimate risk by combining exposure 
distribution with effects information

• Risk curve is one line of evidence 
• Also consider other lines of evidence (e.g., 

biological surveys, in situ toxicity studies)
• Where remediation required, probabilistic 

model can be used to help determine 
cleanup levels
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